Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis
Stephen J. Gurczynski, … , Bethany B. Moore, David N. O’Dwyer
Stephen J. Gurczynski, … , Bethany B. Moore, David N. O’Dwyer
Published November 28, 2023
Citation Information: JCI Insight. 2024;9(1):e164572. https://doi.org/10.1172/jci.insight.164572.
View: Text | PDF
Research Article Microbiology Pulmonology

Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis

  • Text
  • PDF
Abstract

Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is poorly understood. Here, we determine the impact of gut microbiota on pulmonary fibrosis in substrains of C57BL/6 mice derived from different vendors (C57BL/6J and C57BL/6NCrl). We used germ-free models, fecal microbiota transplantation, and cohousing to transmit gut microbiota. Metagenomic studies of feces established keystone species between substrains. Pulmonary fibrosis was microbiota dependent in C57BL/6 mice. Gut microbiota were distinct by β diversity and α diversity. Mortality and lung fibrosis were attenuated in C57BL/6NCrl mice. Elevated CD4+IL-10+ T cells and lower IL-6 occurred in C57BL/6NCrl mice. Horizontal transmission of microbiota by cohousing attenuated mortality in C57BL/6J mice and promoted a transcriptionally altered pulmonary immunity. Temporal changes in lung and gut microbiota demonstrated that gut microbiota contributed largely to immunological phenotype. Key regulatory gut microbiota contributed to lung fibrosis, generating rationale for human studies.

Authors

Stephen J. Gurczynski, Jay H. Lipinski, Joshua Strauss, Shafiul Alam, Gary B. Huffnagle, Piyush Ranjan, Lucy H. Kennedy, Bethany B. Moore, David N. O’Dwyer

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts