Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Identification of a PD-L1+Tim-1+ iNKT subset that protects against fine particulate matter–induced airway inflammation
Christina Li-Ping Thio, Alan Chuan-Ying Lai, Jo-Chiao Wang, Po-Yu Chi, Ya-Lin Chang, Yu-Tse Ting, Shih-Yu Chen, Ya-Jen Chang
Christina Li-Ping Thio, Alan Chuan-Ying Lai, Jo-Chiao Wang, Po-Yu Chi, Ya-Lin Chang, Yu-Tse Ting, Shih-Yu Chen, Ya-Jen Chang
View: Text | PDF
Research Article Immunology Inflammation

Identification of a PD-L1+Tim-1+ iNKT subset that protects against fine particulate matter–induced airway inflammation

  • Text
  • PDF
Abstract

Although air pollutants such as fine particulate matter (PM2.5) are associated with acute and chronic lung inflammation, the etiology of PM2.5-induced airway inflammation remains poorly understood. Here we report that PM2.5 triggered airway hyperreactivity (AHR) and neutrophilic inflammation with concomitant increases in Th1 and Th17 responses and epithelial cell apoptosis. We found that γδ T cells promoted neutrophilic inflammation and AHR through IL-17A. Unexpectedly, we found that invariant natural killer T (iNKT) cells played a protective role in PM2.5-induced pulmonary inflammation. Specifically, PM2.5 activated a suppressive CD4– iNKT cell subset that coexpressed Tim-1 and programmed cell death ligand 1 (PD-L1). Activation of this suppressive subset was mediated by Tim-1 recognition of phosphatidylserine on apoptotic cells. The suppressive iNKT subset inhibited γδ T cell expansion and intrinsic IL-17A production, and the inhibitory effects of iNKT cells on the cytokine-producing capacity of γδ T cells were mediated in part by PD-1/PD-L1 signaling. Taken together, our findings underscore a pathogenic role for IL-17A–producing γδ T cells in PM2.5-elicited inflammation and identify PD-L1+Tim-1+CD4– iNKT cells as a protective subset that prevents PM2.5-induced AHR and neutrophilia by inhibiting γδ T cell function.

Authors

Christina Li-Ping Thio, Alan Chuan-Ying Lai, Jo-Chiao Wang, Po-Yu Chi, Ya-Lin Chang, Yu-Tse Ting, Shih-Yu Chen, Ya-Jen Chang

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts