Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
TFEB-mediated lysosomal exocytosis alleviates high fat diet–induced lipotoxicity in the kidney
Jun Nakamura, … , Andrea Ballabio, Yoshitaka Isaka
Jun Nakamura, … , Andrea Ballabio, Yoshitaka Isaka
Published January 17, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.162498.
View: Text | PDF
Research In-Press Preview Metabolism Nephrology

TFEB-mediated lysosomal exocytosis alleviates high fat diet–induced lipotoxicity in the kidney

  • Text
  • PDF
Abstract

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contributed to lipotoxicity in obesity-related kidney disease, both in humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here we found that palmitic acid (PA) strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 (MTORC1) pathway in a Rag GTPase–dependent manner, although these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell (PTEC)-specific Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which help reduce MLB accumulation in PTECs. Furthermore, HFD-fed PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia–reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of chronic kidney disease patients. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.

Authors

Jun Nakamura, Takeshi Yamamoto, Yoshitsugu Takabatake, Tomoko Namba-Hamano, Satoshi Minami, Atsushi Takahashi, Jun Matsuda, Shinsuke Sakai, Hiroaki Yonishi, Shihomi Maeda, Sho Matsui, Isao Matsui, Takayuki Hamano, Masatomo Takahashi, Maiko Goto, Yoshihiro Izumi, Takeshi Bamba, Miwa Sasai, Masahiro Yamamoto, Taiji Matsusaka, Fumio Niimura, Motoko Yanagita, Shuhei Nakamura, Tamotsu Yoshimori, Andrea Ballabio, Yoshitaka Isaka

×

Full Text PDF | Download (5.06 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts