Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice
Gina N. Calco, Jessica N. Maung, David B. Jacoby, Allison D. Fryer, Zhenying Nie
Gina N. Calco, Jessica N. Maung, David B. Jacoby, Allison D. Fryer, Zhenying Nie
View: Text | PDF
Research Article Metabolism Pulmonology

Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice

  • Text
  • PDF
Abstract

Obesity-induced asthma responds poorly to all current pharmacological interventions, including steroids, suggesting that classic, eosinophilic inflammation is not a mechanism. Since insulin resistance and hyperinsulinemia are common in obese individuals and associated with increased risk of asthma, we used diet-induced obese mice to study how insulin induces airway hyperreactivity. Inhaled 5-HT or methacholine induced dose-dependent bronchoconstriction that was significantly potentiated in obese mice. Cutting the vagus nerves eliminated bronchoconstriction in both obese and nonobese animals, indicating that it was mediated by a neural reflex. There was significantly greater density of airway sensory nerves in obese compared with nonobese mice. Deleting insulin receptors on sensory nerves prevented the increase in sensory nerve density and prevented airway hyperreactivity in obese mice with hyperinsulinemia. Our data demonstrate that high levels of insulin drives obesity-induced airway hyperreactivity by increasing sensory innervation of the airways. Therefore, pharmacological interventions to control metabolic syndrome and limit reflex-mediated bronchoconstriction may be a more effective approach to reduce asthma exacerbations in obese and patients with asthma.

Authors

Gina N. Calco, Jessica N. Maung, David B. Jacoby, Allison D. Fryer, Zhenying Nie

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (73.28 KB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts