HIV-specific chimeric antigen receptor–T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4+ T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7+ stem cell–like/central memory T cells (TSCM/TCM) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4+ T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).


Kim Anthony-Gonda, Alex Ray, Hang Su, Yuge Wang, Ying Xiong, Danica Lee, Ariele Block, Vanessa Chilunda, Jessica Weiselberg, Lily Zemelko, Yen Y. Wang, Sarah Kleinsorge-Block, Jane S. Reese, Marcos de Lima, Christina Ochsenbauer, John C. Kappes, Dimiter S. Dimitrov, Rimas Orentas, Steven G. Deeks, Rachel L. Rutishauser, Joan W. Berman, Harris Goldstein, Boro Dropulić


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.