Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

hsa-miR-548v controls the viscoelastic properties of human cardiomyocytes and improves their relaxation rates
Eva Vermersch, Salomé Neuvendel, Charlène Jouve, Andrea Ruiz-Velasco, Céline Pereira, Magali Seguret, Marie-Elodie Cattin-Messaoudi, Sofia Lotfi, Thierry Dorval, Pascal Berson, Jean-Sébastien Hulot
Eva Vermersch, Salomé Neuvendel, Charlène Jouve, Andrea Ruiz-Velasco, Céline Pereira, Magali Seguret, Marie-Elodie Cattin-Messaoudi, Sofia Lotfi, Thierry Dorval, Pascal Berson, Jean-Sébastien Hulot
View: Text | PDF
Research Article Cardiology Stem cells

hsa-miR-548v controls the viscoelastic properties of human cardiomyocytes and improves their relaxation rates

  • Text
  • PDF
Abstract

The impairment of left ventricular (LV) diastolic function with an inadequate increase in myocardial relaxation velocity directly results in lower LV compliance, increased LV filling pressures, and heart failure symptoms. The development of agents facilitating the relaxation of human cardiomyocytes requires a better understanding of the underlying regulatory mechanisms. We performed a high-content microscopy-based screening in human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) using a library of 2,565 human miRNA mimics and measured relaxation kinetics via high-computing analyses of motion movies. We identified hsa-miR-548v, a primate-specific miRNA, as the miRNA producing the largest increase in relaxation velocities. This positive lusitropic effect was reproduced in engineered cardiac tissues generated with healthy and BRAF T599R mutant hiPSC-CMs and was independent of changes in calcium transients. Consistent with improvements in viscoelastic responses to mechanical stretch, RNA-Seq showed that hsa-miR-548v downregulated multiple targets, especially components of the mechanosensing machinery. The exogenous administration of hsa-miR-548v in hiPSC-CMs notably resulted in a significant reduction of ANKRD1/CARP1 expression and localization at the sarcomeric I-band. This study suggests that the sarcomere I-band is a critical control center regulating the ability of cardiomyocytes to relax and is a target for improving relaxation and diastolic dysfunction.

Authors

Eva Vermersch, Salomé Neuvendel, Charlène Jouve, Andrea Ruiz-Velasco, Céline Pereira, Magali Seguret, Marie-Elodie Cattin-Messaoudi, Sofia Lotfi, Thierry Dorval, Pascal Berson, Jean-Sébastien Hulot

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,001 151
PDF 217 33
Figure 701 2
Supplemental data 868 16
Citation downloads 159 0
Totals 2,946 202
Total Views 3,148

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts