Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers Cerebral cavernous malformation
Xi Yang, … , Lu Wang, Xiangjian Zheng
Xi Yang, … , Lu Wang, Xiangjian Zheng
Published January 24, 2023
Citation Information: JCI Insight. 2023. https://doi.org/10.1172/jci.insight.160372.
View: Text | PDF
Research In-Press Preview Angiogenesis Vascular biology

Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers Cerebral cavernous malformation

  • Text
  • PDF
Abstract

Loss of function mutations in CCM genes and gain of function mutation in the MAP3K3 gene encoding MEKK3 cause cerebral cavernous malformation (CCM). Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells cause defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity that contributes to vessel stability. Loss of STK24/25 causes MEKK3 activation leading to CCM lesion formation.

Authors

Xi Yang, Shi-Ting Wu, Rui Gao, Rui Wang, Yixuan Wang, Zhenkun Dong, Lu Wang, Chunxiao Qi, Xiaohong Wang, M. Lienhard Schmitz, Renjing Liu, Zhiming Han, Lu Wang, Xiangjian Zheng

×

Usage data is cumulative from January 2023 through February 2023.

Usage JCI PMC
Text version 231 0
PDF 79 0
Supplemental data 12 0
Citation downloads 8 0
Totals 330 0
Total Views 330

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts