Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Biogeographic and disease-specific alterations in epidermal lipid composition and single-cell analysis of acral keratinocytes
Alexander A. Merleev, … , Johann E. Gudjonsson, Emanual Maverakis
Alexander A. Merleev, … , Johann E. Gudjonsson, Emanual Maverakis
Published July 28, 2022
Citation Information: JCI Insight. 2022;7(16):e159762. https://doi.org/10.1172/jci.insight.159762.
View: Text | PDF
Resource and Technical Advance Dermatology

Biogeographic and disease-specific alterations in epidermal lipid composition and single-cell analysis of acral keratinocytes

  • Text
  • PDF
Abstract

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.

Authors

Alexander A. Merleev, Stephanie T. Le, Claire Alexanian, Atrin Toussi, Yixuan Xie, Alina I. Marusina, Steven M. Watkins, Forum Patel, Allison C. Billi, Julie Wiedemann, Yoshihiro Izumiya, Ashish Kumar, Ranjitha Uppala, J. Michelle Kahlenberg, Fu-Tong Liu, Iannis E. Adamopoulos, Elizabeth A. Wang, Chelsea Ma, Michelle Y. Cheng, Halani Xiong, Amanda Kirane, Guillaume Luxardi, Bogi Andersen, Lam C. Tsoi, Carlito B. Lebrilla, Johann E. Gudjonsson, Emanual Maverakis

×

Figure 5

Differential expression of lipid-associated metabolic genes assessed by single-cell sequencing.

Options: View larger image (or click on image) Download as PowerPoint
Differential expression of lipid-associated metabolic genes assessed by ...
(A) Individual keratinocyte transcriptome data are presented using the uniform manifold approximation and projection (UMAP) method. Each dot represents an individual keratinocyte. Note that keratinocytes originating from the same anatomic location and epidermal layer cluster together (basal [palm, green; trunk, yellow], spinous [palm, blue; trunk, pink], and granular [palm, red; trunk, orange] layers). Cells expressing the noted lipid-associated are depicted in purple. Dashed circles are drawn around the keratinocyte population, in which the expression of the noted gene is most strongly upregulated. (B) Predicted alterations in ceramide lipid expression based on ceramide synthase gene expression in trunk versus palm skin. (C) Single-cell RNA-Seq data of palm and trunk epidermal granular layer keratinocytes presented as box-and-whisker plots. Genes selected for presentation are relevant to the observed lipid alterations in PH skin. Each individual data point represents the number of reads that mapped to the indicated gene in a unique granular layer keratinocyte.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts