Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes
Amy F. McLemore, … , Alan F. List, Kathy L. McGraw
Amy F. McLemore, … , Alan F. List, Kathy L. McGraw
Published July 5, 2022
Citation Information: JCI Insight. 2022;7(15):e159430. https://doi.org/10.1172/jci.insight.159430.
View: Text | PDF
Research Article Hematology Oncology

Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes

  • Text
  • PDF
Abstract

NLRP3 inflammasome and IFN-stimulated gene (ISG) induction are key biological drivers of ineffective hematopoiesis and inflammation in myelodysplastic syndromes (MDSs). Gene mutations involving mRNA splicing and epigenetic regulatory pathways induce inflammasome activation and myeloid lineage skewing in MDSs through undefined mechanisms. Using immortalized murine hematopoietic stem and progenitor cells harboring these somatic gene mutations and primary MDS BM specimens, we showed accumulation of unresolved R-loops and micronuclei with concurrent activation of the cytosolic sensor cyclic GMP-AMP synthase. Cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling caused ISG induction, NLRP3 inflammasome activation, and maturation of the effector protease caspase-1. Deregulation of RNA polymerase III drove cytosolic R-loop generation, which upon inhibition, extinguished ISG and inflammasome response. Mechanistically, caspase-1 degraded the master erythroid transcription factor, GATA binding protein 1, provoking anemia and myeloid lineage bias that was reversed by cGAS inhibition in vitro and in Tet2–/– hematopoietic stem and progenitor cell–transplanted mice. Together, these data identified a mechanism by which functionally distinct mutations converged upon the cGAS/STING/NLRP3 axis in MDS, directing ISG induction, pyroptosis, and myeloid lineage skewing.

Authors

Amy F. McLemore, Hsin-An Hou, Benjamin S. Meyer, Nghi B. Lam, Grace A. Ward, Amy L. Aldrich, Matthew A. Rodrigues, Alexis Vedder, Ling Zhang, Eric Padron, Nicole D. Vincelette, David A. Sallman, Omar Abdel-Wahab, Alan F. List, Kathy L. McGraw

×

Figure 6

Treatment with cGAS inhibitor restores erythroid differentiation.

Options: View larger image (or click on image) Download as PowerPoint
Treatment with cGAS inhibitor restores erythroid differentiation.
(A) Tr...
(A) Treatment with the cGAS inhibitor increased GATA1 transcription (n = 4) in MDS BM-MNCs, differentiation evidenced by Wright-Giemsa staining (n = 2) (B), and CD71 expression (n = 3); representative flow histogram (C) in MDS BM-MNCs. The original image was taken with a 40× objective on EVOS FL Auto microscope. (D) BM-MNC ASC specks decreased in Tet2–/– CD45.2 BM-MNCs treated in vivo for 6 weeks with RU.521 compared with vehicle (n = 3, each); (E) increased erythroid islands in the bone marrow from mice treated with RU.521compared with mice treated with vehicle; and (F) increased hemoglobin, hematocrit, and lymphocytes and decreased monocytes in treated mice (n = 8) compared with vehicle (n = 9). Data are presented as mean ± SEM. Student’s t test; *P ≤ 0.05.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts