Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Sorry, no manuscript exists with that criteria.

Usage Information

RhoBTB1 reverses established arterial stiffness in angiotensin II–induced hypertension by promoting actin depolymerization
Shi Fang, … , Frederick W. Quelle, Curt D. Sigmund
Shi Fang, … , Frederick W. Quelle, Curt D. Sigmund
Published March 31, 2022
Citation Information: JCI Insight. 2022;7(9):e158043. https://doi.org/10.1172/jci.insight.158043.
View: Text | PDF
Research Article Vascular biology

RhoBTB1 reverses established arterial stiffness in angiotensin II–induced hypertension by promoting actin depolymerization

  • Text
  • PDF
Abstract

Arterial stiffness predicts cardiovascular disease and all-cause mortality, but its treatment remains challenging. Mice treated with angiotensin II (Ang II) develop hypertension, arterial stiffness, vascular dysfunction, and a downregulation of Rho-related BTB domain–containing protein 1 (RhoBTB1) in the vasculature. RhoBTB1 is associated with blood pressure regulation, but its function is poorly understood. We tested the hypothesis that restoring RhoBTB1 can attenuate arterial stiffness, hypertension, and vascular dysfunction in Ang II–treated mice. Genetic complementation of RhoBTB1 in the vasculature was achieved using mice expressing a tamoxifen-inducible, smooth muscle–specific RhoBTB1 transgene. RhoBTB1 restoration efficiently and rapidly alleviated arterial stiffness but not hypertension or vascular dysfunction. Mechanistic studies revealed that RhoBTB1 had no substantial effect on several classical arterial stiffness contributors, such as collagen deposition, elastin content, and vascular smooth muscle remodeling. Instead, Ang II increased actin polymerization in the aorta, which was reversed by RhoBTB1. Changes in the levels of 2 regulators of actin polymerization, cofilin and vasodilator-stimulated phosphoprotein, in response to RhoBTB1 were consistent with an actin depolymerization mechanism. Our study reveals an important function of RhoBTB1, demonstrates its vital role in antagonizing established arterial stiffness, and further supports a functional and mechanistic separation among hypertension, vascular dysfunction, and arterial stiffness.

Authors

Shi Fang, Jing Wu, John J. Reho, Ko-Ting Lu, Daniel T. Brozoski, Gaurav Kumar, Alec M. Werthman, Sebastiao Donato Silva Jr., Patricia C. Muskus Veitia, Kelsey K. Wackman, Angela J. Mathison, Bi Qing Teng, Chien-Wei Lin, Frederick W. Quelle, Curt D. Sigmund

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 483 194
PDF 105 39
Figure 519 2
Supplemental data 79 13
Citation downloads 95 0
Totals 1,281 248
Total Views 1,529

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts