Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Rehabilitation combined with neural progenitor cell grafts enables functional recovery in chronic spinal cord injury
Paul Lu, Camila M. Freria, Lori Graham, Amanda N. Tran, Ashley Villarta, Dena Yassin, J. Russell Huie, Adam R. Ferguson, Mark H. Tuszynski
Paul Lu, Camila M. Freria, Lori Graham, Amanda N. Tran, Ashley Villarta, Dena Yassin, J. Russell Huie, Adam R. Ferguson, Mark H. Tuszynski
View: Text | PDF
Research Article Neuroscience

Rehabilitation combined with neural progenitor cell grafts enables functional recovery in chronic spinal cord injury

  • Text
  • PDF
Abstract

We reported previously that neural progenitor cell (NPC) grafts form neural relays across sites of subacute spinal cord injury (SCI) and support functional recovery. Here, we examine whether NPC grafts after chronic delays also support recovery and whether intensive rehabilitation further enhances recovery. One month after severe bilateral cervical contusion, rats received daily intensive rehabilitation, NPC grafts, or both rehabilitation and grafts. Notably, only the combination of rehabilitation and grafting significantly improved functional recovery. Moreover, improved functional outcomes were associated with a rehabilitation-induced increase in host corticospinal axon regeneration into grafts. These findings identify a critical and synergistic role of rehabilitation and neural stem cell therapy in driving neural plasticity to support functional recovery after chronic and severe SCI.

Authors

Paul Lu, Camila M. Freria, Lori Graham, Amanda N. Tran, Ashley Villarta, Dena Yassin, J. Russell Huie, Adam R. Ferguson, Mark H. Tuszynski

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,290 173
PDF 289 52
Figure 345 1
Supplemental data 121 20
Citation downloads 110 0
Totals 2,155 246
Total Views 2,401
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts