Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity
Youji Hong, … , Cem Sievers, Clint T. Allen
Youji Hong, … , Cem Sievers, Clint T. Allen
Published March 8, 2022
Citation Information: JCI Insight. 2022;7(5):e157448. https://doi.org/10.1172/jci.insight.157448.
View: Text | PDF
Research Article Immunology Oncology

Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity

  • Text
  • PDF
Abstract

Therapeutic IL-12 has demonstrated the ability to reduce local immune suppression in preclinical models, but clinical development has been limited by severe inflammation-related adverse events with systemic administration. Here, we show that potent immunologic tumor control of established syngeneic carcinomas can be achieved by i.t. administration of a tumor-targeted IL-12 antibody fusion protein (NHS–rmIL-12) using sufficiently low doses to avoid systemic toxicity. Single-cell transcriptomic analysis and ex vivo functional assays of NHS–rmIL-12–treated tumors revealed reinvigoration and enhanced proliferation of exhausted CD8+ T lymphocytes, induction of Th1 immunity, and a decrease in Treg number and suppressive capacity. Similarly, myeloid cells transitioned toward inflammatory phenotypes and displayed reduced suppressive capacity. Cell type–specific IL-12 receptor–KO BM chimera studies revealed that therapeutic modulation of both lymphoid and myeloid cells is required for maximum treatment effect and tumor cure. Study of single-cell data sets from human head and neck carcinomas revealed IL-12 receptor expression patterns similar to those observed in murine tumors. These results describing the diverse mechanisms underlying tumor-directed IL-12–induced antitumor immunity provide the preclinical rationale for the clinical study of i.t. NHS–IL-12.

Authors

Youji Hong, Yvette Robbins, Xinping Yang, Wojciech K. Mydlarz, Anastasia Sowers, James B. Mitchell, James L. Gulley, Jeffrey Schlom, Sofia R. Gameiro, Cem Sievers, Clint T. Allen

×

Full Text PDF | Download (8.37 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts