Chronic myeloproliferative neoplasms (MPN) frequently evolve to a blast phase (BP) that is almost uniformly resistant to induction chemotherapy or hypomethylating agents. We explored the functional properties, genomic architecture, and cell of origin of MPN-BP initiating cells (IC) using a serial NSG mouse xenograft transplantation model. Transplantation of peripheral blood mononuclear cells (MNC) from 7 of 18 patients resulted in a high degree of leukemic cell chimerism and recreated clinical characteristics of human MPN-BP. The function of MPN-BP ICs was not dependent on the presence of JAK2V617F, a driver mutation associated with the initial underlying MPN. By contrast, multiple MPN-BP IC subclones coexisted within MPN-BP MNCs characterized by different myeloid malignancy gene mutations and cytogenetic abnormalities. MPN-BP ICs in 4 patients exhibited extensive proliferative and self-renewal capacity, as demonstrated by their ability to recapitulate human MPN-BP in serial recipients. These MPN-BP IC subclones underwent extensive continuous clonal competition within individual xenografts and across multiple generations, and their subclonal dynamics were consistent with functional evolution of MPN-BP IC. Finally, we show that MPN-BP ICs originate from not only phenotypically identified hematopoietic stem cells, but also lymphoid-myeloid progenitor cells, which were each characterized by differences in MPN-BP initiating activity and self-renewal capacity.
Xiaoli Wang, Raajit K. Rampal, Cing Siang Hu, Joseph Tripodi, Noushin Farnoud, Bruce Petersen, Michael R. Rossi, Minal Patel, Erin McGovern, Vesna Najfeld, Camelia Iancu-Rubin, Min Lu, Andrew Davis, Marina Kremyanskaya, Rona Singer Weinberg, John Mascarenhas, Ronald Hoffman
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 387 | 145 |
63 | 28 | |
Figure | 147 | 0 |
Table | 79 | 0 |
Supplemental data | 59 | 4 |
Citation downloads | 36 | 0 |
Totals | 771 | 177 |
Total Views | 948 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.