Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Characterization of disease-propagating stem cells responsible for myeloproliferative neoplasm–blast phase
Xiaoli Wang, … , John Mascarenhas, Ronald Hoffman
Xiaoli Wang, … , John Mascarenhas, Ronald Hoffman
Published March 8, 2022
Citation Information: JCI Insight. 2022;7(8):e156534. https://doi.org/10.1172/jci.insight.156534.
View: Text | PDF
Research Article Oncology Stem cells

Characterization of disease-propagating stem cells responsible for myeloproliferative neoplasm–blast phase

  • Text
  • PDF
Abstract

Chronic myeloproliferative neoplasms (MPN) frequently evolve to a blast phase (BP) that is almost uniformly resistant to induction chemotherapy or hypomethylating agents. We explored the functional properties, genomic architecture, and cell of origin of MPN-BP initiating cells (IC) using a serial NSG mouse xenograft transplantation model. Transplantation of peripheral blood mononuclear cells (MNC) from 7 of 18 patients resulted in a high degree of leukemic cell chimerism and recreated clinical characteristics of human MPN-BP. The function of MPN-BP ICs was not dependent on the presence of JAK2V617F, a driver mutation associated with the initial underlying MPN. By contrast, multiple MPN-BP IC subclones coexisted within MPN-BP MNCs characterized by different myeloid malignancy gene mutations and cytogenetic abnormalities. MPN-BP ICs in 4 patients exhibited extensive proliferative and self-renewal capacity, as demonstrated by their ability to recapitulate human MPN-BP in serial recipients. These MPN-BP IC subclones underwent extensive continuous clonal competition within individual xenografts and across multiple generations, and their subclonal dynamics were consistent with functional evolution of MPN-BP IC. Finally, we show that MPN-BP ICs originate from not only phenotypically identified hematopoietic stem cells, but also lymphoid-myeloid progenitor cells, which were each characterized by differences in MPN-BP initiating activity and self-renewal capacity.

Authors

Xiaoli Wang, Raajit K. Rampal, Cing Siang Hu, Joseph Tripodi, Noushin Farnoud, Bruce Petersen, Michael R. Rossi, Minal Patel, Erin McGovern, Vesna Najfeld, Camelia Iancu-Rubin, Min Lu, Andrew Davis, Marina Kremyanskaya, Rona Singer Weinberg, John Mascarenhas, Ronald Hoffman

×

Figure 3

Multiple distinct MPN-BP IC clones/subclones coexist in patients with MPN-BP, which are capable of engrafting and recreating human MPN-BP in NSG mice.

Options: View larger image (or click on image) Download as PowerPoint
Multiple distinct MPN-BP IC clones/subclones coexist in patients with MP...
(A and B) The percentage of leukemic cells carrying each genetic mutation (cancer cell fraction [CCF]) in primary samples and in the corresponding individual P0 xenografts (left scatter plot) and the inferred MPN-BP IC clonal hierarchy (right diagram) for Pt 1 (A) and Pt 7 (B) belonging to Group 1. Mutations clustered together are indicated by the same color. Each circle represents a clone. Throughout each panel, the founder clone containing mutations indicated in dark gray in the left scatter plot is also shown in dark gray and is indicated in circle 1. Each subclone that is evolved from the parent clone is indicated by the circle of the same color that denotes the mutations newly acquired in the left scatter plot and is indicated by circles 1–4. In Pt 1, ClonEvol identified only 1 consensus model, while in Pt 7, this same program inferred 2 consensus models to explain the clonal hierarchy of MPN-BP ICs.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts