Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Junctional adhesion molecule-A deletion increases phagocytosis and improves survival in a murine model of sepsis
Nathan J. Klingensmith, … , Mandy L. Ford, Craig M. Coopersmith
Nathan J. Klingensmith, … , Mandy L. Ford, Craig M. Coopersmith
Published July 12, 2022
Citation Information: JCI Insight. 2022;7(16):e156255. https://doi.org/10.1172/jci.insight.156255.
View: Text | PDF
Research Article Infectious disease

Junctional adhesion molecule-A deletion increases phagocytosis and improves survival in a murine model of sepsis

  • Text
  • PDF
Abstract

Expression of the tight junction–associated protein junctional adhesion molecule-A (JAM-A) is increased in sepsis, although the significance of this is unknown. Here, we show that septic JAM-A –/– mice have increased gut permeability, yet paradoxically have decreased bacteremia and systemic TNF and IL-1β expression. Survival is improved in JAM-A–/– mice. However, intestine-specific JAM-A–/– deletion does not alter mortality, suggesting that the mortality benefit conferred in mice lacking JAM-A is independent of the intestine. Septic JAM-A–/– mice have increased numbers of splenic CD44hiCD4+ T cells, decreased frequency of TNF+CD4+ cells, and elevated frequency of IL-2+CD4+ cells. Septic JAM-A–/– mice have increased numbers of B cells in mesenteric lymph nodes with elevated serum IgA and intraepithelial lymphocyte IgA production. JAM-A–/– × RAG–/– mice have improved survival compared with RAG–/– mice and identical mortality as WT mice. Gut neutrophil infiltration and neutrophil phagocytosis are increased in JAM-A–/– mice, while septic JAM-A–/– mice depleted of neutrophils lose their survival advantage. Therefore, increased bacterial clearance via neutrophils and an altered systemic inflammatory response with increased opsonizing IgA produced through the adaptive immune system results in improved survival in septic JAM-A–/– mice. JAM-A may be a therapeutic target in sepsis via immune mechanisms not related to its role in permeability.

Authors

Nathan J. Klingensmith, Katherine T. Fay, David A. Swift, Julia M.R. Bazzano, John D. Lyons, Ching-wen Chen, Mei Meng, Kimberly M. Ramonell, Zhe Liang, Eileen M. Burd, Charles A. Parkos, Mandy L. Ford, Craig M. Coopersmith

×

Usage data is cumulative from July 2022 through January 2023.

Usage JCI PMC
Text version 3,750 37
PDF 448 12
Figure 209 0
Supplemental data 81 1
Citation downloads 43 0
Totals 4,531 50
Total Views 4,581

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts