Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Prdm6 controls heart development by regulating neural crest cell differentiation and migration
Lingjuan Hong, Na Li, Victor Gasque, Sameet Mehta, Lupeng Ye, Yinyu Wu, Jinyu Li, Andreas Gewies, Jürgen Ruland, Karen K. Hirschi, Anne Eichmann, Caroline Hendry, David van Dijk, Arya Mani
Lingjuan Hong, Na Li, Victor Gasque, Sameet Mehta, Lupeng Ye, Yinyu Wu, Jinyu Li, Andreas Gewies, Jürgen Ruland, Karen K. Hirschi, Anne Eichmann, Caroline Hendry, David van Dijk, Arya Mani
View: Text | PDF
Research Article Cardiology Development

Prdm6 controls heart development by regulating neural crest cell differentiation and migration

  • Text
  • PDF
Abstract

The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial–mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.

Authors

Lingjuan Hong, Na Li, Victor Gasque, Sameet Mehta, Lupeng Ye, Yinyu Wu, Jinyu Li, Andreas Gewies, Jürgen Ruland, Karen K. Hirschi, Anne Eichmann, Caroline Hendry, David van Dijk, Arya Mani

×

Figure 6

A representation of significantly changed transcripts in Prdm6fl/fl SM22-Cre versus control mice measured by qRT-PCR.

Options: View larger image (or click on image) Download as PowerPoint
A representation of significantly changed transcripts in Prdm6fl/fl SM22...
The relative transcript levels of Prdm6 (A), Myh11 (B), Tagln (C), Tfap2b (D), Sox9 (E), and Kdr (F) in the aorta and DA of Prdm6fl/fl SM22-Cre mice versus control mice at E17.5 and P0.5, assayed by real-time fluorescent quantitative PCR are shown. The comparison between different groups was done by a 2-tailed unpaired t test, and data are shown as mean ± SEM. Each dot represents a biological replicate. The normalcy was tested by Kolmogorov-Smirnov test. A Mann-Whitney test was conducted for non-normally distributed data. (n = 3–9 per group). *P < 0.05, ***P < 0.001, ****P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts