Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R
Adelaide Bernard, Irene Ojeda Naharros, Xinyu Yue, Francois Mifsud, Abbey Blake, Florence Bourgain-Guglielmetti, Jordi Ciprin, Sumei Zhang, Erin McDaid, Kellan Kim, Maxence V. Nachury, Jeremy F. Reiter, Christian Vaisse
Adelaide Bernard, Irene Ojeda Naharros, Xinyu Yue, Francois Mifsud, Abbey Blake, Florence Bourgain-Guglielmetti, Jordi Ciprin, Sumei Zhang, Erin McDaid, Kellan Kim, Maxence V. Nachury, Jeremy F. Reiter, Christian Vaisse
View: Text | PDF
Research Article Endocrinology Metabolism

MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R

  • Text
  • PDF
Abstract

The G protein–coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor–associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.

Authors

Adelaide Bernard, Irene Ojeda Naharros, Xinyu Yue, Francois Mifsud, Abbey Blake, Florence Bourgain-Guglielmetti, Jordi Ciprin, Sumei Zhang, Erin McDaid, Kellan Kim, Maxence V. Nachury, Jeremy F. Reiter, Christian Vaisse

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,560 358
PDF 214 79
Figure 351 7
Supplemental data 69 11
Citation downloads 120 0
Totals 2,314 455
Total Views 2,769

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts