Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Cystathionine γ-lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation
Yvonne L. Latour, Johanna C. Sierra, Jordan L. Finley, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Thaddeus M. Smith, Kara M. McNamara, Paula B. Luis, Claus Schneider, Justin Jacobse, Jeremy A. Goettel, M. Wade Calcutt, Kristie L. Rose, Kevin L. Schey, Ginger L. Milne, Alberto G. Delgado, M. Blanca Piazuelo, Bindu D. Paul, Solomon H. Snyder, Alain P. Gobert, Keith T. Wilson
Yvonne L. Latour, Johanna C. Sierra, Jordan L. Finley, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Thaddeus M. Smith, Kara M. McNamara, Paula B. Luis, Claus Schneider, Justin Jacobse, Jeremy A. Goettel, M. Wade Calcutt, Kristie L. Rose, Kevin L. Schey, Ginger L. Milne, Alberto G. Delgado, M. Blanca Piazuelo, Bindu D. Paul, Solomon H. Snyder, Alain P. Gobert, Keith T. Wilson
View: Text | PDF
Research Article Gastroenterology Immunology

Cystathionine γ-lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation

  • Text
  • PDF
Abstract

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world’s population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth–/– mice had reduced macrophage and T cell activation in H. pylori–infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori–induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth–/– mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori–induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori–induced gastric disease.

Authors

Yvonne L. Latour, Johanna C. Sierra, Jordan L. Finley, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Thaddeus M. Smith, Kara M. McNamara, Paula B. Luis, Claus Schneider, Justin Jacobse, Jeremy A. Goettel, M. Wade Calcutt, Kristie L. Rose, Kevin L. Schey, Ginger L. Milne, Alberto G. Delgado, M. Blanca Piazuelo, Bindu D. Paul, Solomon H. Snyder, Alain P. Gobert, Keith T. Wilson

×

Figure 5

Identification of H. pylori–regulated genes in Gmacs.

Options: View larger image (or click on image) Download as PowerPoint
Identification of H. pylori–regulated genes in Gmacs.
(A and B) The volc...
(A and B) The volcano plots show differential gene signatures in Gmacs from infected mice compared with uninfected mice (fold change [FC] > 2; FDR < 0.05). Gray dots, not significant; green dots, log2 fold change > 2; blue dots, adjusted (adj) P < 0.05; red dots, log2 fold change > 2 and adjusted P < 0.05. Genes of interest are enlarged. (A) Gmacs from H. pylori–infected WT mice compared with uninfected WT mice. (B) Gmacs from H. pylori–infected Cth–/– mice compared with uninfected Cth–/– mice. (C) Heatmaps displaying significantly altered pathways of DEGs in Cth–/– Gmacs compared with WT Gmacs of infected mice when compared with uninfected controls (interaction P < 0.01). Fold change is infected divided by control for each genotype.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts