Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice
Sarah K. Popp, … , Alessandra Petrelli, Charmaine J. Simeonovic
Sarah K. Popp, … , Alessandra Petrelli, Charmaine J. Simeonovic
Published January 25, 2022
Citation Information: JCI Insight. 2022;7(2):e153993. https://doi.org/10.1172/jci.insight.153993.
View: Text | PDF
Research Article

Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice

  • Text
  • PDF
Abstract

Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10–12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.

Authors

Sarah K. Popp, Federica Vecchio, Debra J. Brown, Riho Fukuda, Yuri Suzuki, Yuma Takeda, Rikako Wakamatsu, Mahalakshmi A. Sarma, Jessica Garrett, Anna Giovenzana, Emanuele Bosi, Antony R.A. Lafferty, Karen J. Brown, Elizabeth E. Gardiner, Lucy A. Coupland, Helen E. Thomas, Beng H. Chong, Christopher R. Parish, Manuela Battaglia, Alessandra Petrelli, Charmaine J. Simeonovic

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts