Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A single-cell atlas of the myometrium in human parturition
Roger Pique-Regi, Roberto Romero, Valeria Garcia-Flores, Azam Peyvandipour, Adi L. Tarca, Errile Pusod, Jose Galaz, Derek Miller, Gaurav Bhatti, Robert Para, Tomi Kanninen, Ola Hadaya, Carmen Paredes, Kenichiro Motomura, Jeffrey R. Johnson, Eunjung Jung, Chaur-Dong Hsu, Stanley M. Berry, Nardhy Gomez-Lopez
Roger Pique-Regi, Roberto Romero, Valeria Garcia-Flores, Azam Peyvandipour, Adi L. Tarca, Errile Pusod, Jose Galaz, Derek Miller, Gaurav Bhatti, Robert Para, Tomi Kanninen, Ola Hadaya, Carmen Paredes, Kenichiro Motomura, Jeffrey R. Johnson, Eunjung Jung, Chaur-Dong Hsu, Stanley M. Berry, Nardhy Gomez-Lopez
View: Text | PDF
Research Article Cell biology Reproductive biology

A single-cell atlas of the myometrium in human parturition

  • Text
  • PDF
Abstract

Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type–specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.

Authors

Roger Pique-Regi, Roberto Romero, Valeria Garcia-Flores, Azam Peyvandipour, Adi L. Tarca, Errile Pusod, Jose Galaz, Derek Miller, Gaurav Bhatti, Robert Para, Tomi Kanninen, Ola Hadaya, Carmen Paredes, Kenichiro Motomura, Jeffrey R. Johnson, Eunjung Jung, Chaur-Dong Hsu, Stanley M. Berry, Nardhy Gomez-Lopez

×

Figure 6

Genes and pathways involved in myometrial physiology.

Options: View larger image (or click on image) Download as PowerPoint
Genes and pathways involved in myometrial physiology.
(A) Meta plots sho...
(A) Meta plots showing differential expression of representative genes (defined as posterior means and variance of effects) across selected cell types obtained using MASH analysis. Bold lines are used to highlight the specific contributions of selected cell types. (B) STRING analysis plot showing interactions of labor-associated differentially expressed genes (DEGs) in the myometrial tissues (n = 24) derived from the Reactome database, where subnetworks in blue represent extracellular matrix organization, green represent cytokine signaling, and pink represent response to metallothioneins bind metals. (C) ClusterProfiler dot plot showing biological processes enriched for labor-associated DEGs in the Decidual, Endothelial-1, Endothelial-2, Macrophage-1, Macrophage-2, Macrophage-3, Monocyte, SMC-1, Stromal-1, and Stromal-2 cell types of myometrial tissues based on the overrepresentation analysis, where the size and color of the dots represent enrichment score and significance level, respectively. A 1-sided Fisher’s exact test (ClusterProfiler) was used. Enriched GO terms with q < 0.05 were selected. ILC, innate lymphoid cell; LED, lymphoid endothelial decidual cell; NK cell, natural killer cell; SMC, smooth muscle cell.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts