Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury
Xili Ding, Qin An, Weikang Zhao, Yang Song, Xiaokai Tang, Jing Wang, Chih-Chiang Chang, Gexin Zhao, Tzung Hsiai, Guoping Fan, Yubo Fan, Song Li
Xili Ding, Qin An, Weikang Zhao, Yang Song, Xiaokai Tang, Jing Wang, Chih-Chiang Chang, Gexin Zhao, Tzung Hsiai, Guoping Fan, Yubo Fan, Song Li
View: Text | PDF
Research Article Vascular biology

Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury

  • Text
  • PDF
Abstract

Vascular smooth muscle cells (SMCs) are heterogeneous, and their differential responses to vascular injury are not well understood. To address this question, we performed single-cell analysis of vascular cells to a ligation injury in mouse carotid arteries after 3 days. While endothelial cells had a homogeneous activation of mesenchymal genes, less than 30% of SMCs responded to the injury and generated 2 distinct clusters — i.e., proinflammatory SMCs and stress-responsive SMCs. Proinflammatory SMCs were enriched with high levels of inflammatory markers such as vascular cell adhesion molecule-1 while stress-responsive SMCs overexpressed heat shock proteins. Trajectory analysis suggested that proinflammatory SMCs were potentially derived from a specific subpopulation of SMCs. Ligand-receptor pair analysis showed that the interaction between macrophages and proinflammatory SMCs was the major cell-cell communication among all cell types in the injured arteries. In vitro coculture demonstrated that VCAM1+ SMCs had a stronger chemotactic effect on macrophage recruitment than VCAM1– SMCs. Consistently, the number of VCAM1+ SMCs significantly increased in injured arteries and atherosclerotic lesions of ApoE–/– mice and human arteries. These findings provide insights at the single-cell level on the distinct patterns of endothelial cells and SMC responses to vascular injury.

Authors

Xili Ding, Qin An, Weikang Zhao, Yang Song, Xiaokai Tang, Jing Wang, Chih-Chiang Chang, Gexin Zhao, Tzung Hsiai, Guoping Fan, Yubo Fan, Song Li

×

Figure 2

Early responses of ECs with the activation of mesenchymal genes.

Options: View larger image (or click on image) Download as PowerPoint
Early responses of ECs with the activation of mesenchymal genes.
(A) Fea...
(A) Feature plot of EC markers Pecam1, Flt1, and Eng in normal and injured arteries. (B) Feature plot of selected markers Tagln in normal and injured arteries. (C) Differentially expressed genes between ECs in cluster 5 (normal arteries) and cluster 9 (injured arteries). (D) Immunofluorescence staining of VE-cadherin (VE-cad) and SM22 was performed in normal and injured arteries at different time points (3 days to 1 month) after ligation (n = 5). Scale bar: 50 μm. Arrows indicate VE-cad+SM22+ cells. Asterisk indicates the lumen of the artery.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts