Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling
Slaven Crnkovic, Francesco Valzano, Elisabeth Fließer, Jürgen Gindlhuber, Helene Thekkekara Puthenparampil, Maria Basil, Mike P. Morley, Jeremy Katzen, Elisabeth Gschwandtner, Walter Klepetko, Edward Cantu, Heimo Wolinski, Horst Olschewski, Jörg Lindenmann, You-Yang Zhao, Edward E. Morrisey, Leigh M. Marsh, Grazyna Kwapiszewska
Slaven Crnkovic, Francesco Valzano, Elisabeth Fließer, Jürgen Gindlhuber, Helene Thekkekara Puthenparampil, Maria Basil, Mike P. Morley, Jeremy Katzen, Elisabeth Gschwandtner, Walter Klepetko, Edward Cantu, Heimo Wolinski, Horst Olschewski, Jörg Lindenmann, You-Yang Zhao, Edward E. Morrisey, Leigh M. Marsh, Grazyna Kwapiszewska
View: Text | PDF
Research Article Pulmonology Vascular biology

Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling

  • Text
  • PDF
Abstract

A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.

Authors

Slaven Crnkovic, Francesco Valzano, Elisabeth Fließer, Jürgen Gindlhuber, Helene Thekkekara Puthenparampil, Maria Basil, Mike P. Morley, Jeremy Katzen, Elisabeth Gschwandtner, Walter Klepetko, Edward Cantu, Heimo Wolinski, Horst Olschewski, Jörg Lindenmann, You-Yang Zhao, Edward E. Morrisey, Leigh M. Marsh, Grazyna Kwapiszewska

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 3,074 1,710
PDF 341 349
Figure 936 7
Supplemental data 819 527
Citation downloads 197 0
Totals 5,367 2,593
Total Views 7,960

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts