Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
ChREBPβ is dispensable for the control of glucose homeostasis and energy balance
Emeline Recazens, Geneviève Tavernier, Jérémy Dufau, Camille Bergoglio, Fadila Benhamed, Stéphanie Cassant-Sourdy, Marie-Adeline Marques, Sylvie Caspar-Bauguil, Alice Brion, Laurent Monbrun, Renaud Dentin, Clara Ferrier, Mélanie Leroux, Pierre-Damien Denechaud, Cedric Moro, Jean-Paul Concordet, Catherine Postic, Etienne Mouisel, Dominique Langin
Emeline Recazens, Geneviève Tavernier, Jérémy Dufau, Camille Bergoglio, Fadila Benhamed, Stéphanie Cassant-Sourdy, Marie-Adeline Marques, Sylvie Caspar-Bauguil, Alice Brion, Laurent Monbrun, Renaud Dentin, Clara Ferrier, Mélanie Leroux, Pierre-Damien Denechaud, Cedric Moro, Jean-Paul Concordet, Catherine Postic, Etienne Mouisel, Dominique Langin
View: Text | PDF
Research Article Metabolism

ChREBPβ is dispensable for the control of glucose homeostasis and energy balance

  • Text
  • PDF
Abstract

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPβ, a constitutively nuclear shorter form. ChREBPβ gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPβ deficiency on insulin action and energy balance. ChREBPβ-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPβ showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPβ had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPβ deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPβ is dispensable for metabolic adaptations to nutritional and thermic challenges.

Authors

Emeline Recazens, Geneviève Tavernier, Jérémy Dufau, Camille Bergoglio, Fadila Benhamed, Stéphanie Cassant-Sourdy, Marie-Adeline Marques, Sylvie Caspar-Bauguil, Alice Brion, Laurent Monbrun, Renaud Dentin, Clara Ferrier, Mélanie Leroux, Pierre-Damien Denechaud, Cedric Moro, Jean-Paul Concordet, Catherine Postic, Etienne Mouisel, Dominique Langin

×

Figure 6

Response of ChREBPβ-deficient mice to thermic challenges.

Options: View larger image (or click on image) Download as PowerPoint
Response of ChREBPβ-deficient mice to thermic challenges.
(A–E) Represen...
(A–E) Representative H&E staining (A), mRNA levels of de novo lipogenesis and thermogenic genes (B), fatty acid profile in triglycerides (TG) (C), OXPHOS and UCP1 protein levels (D), and mitochondrial DNA (mitoDNA) content (E) in interscapular brown adipose tissue of C57BL6/J male mice adapted to thermoneutrality for 6 weeks (n = 7–9). Data are mean ± SEM. Statistical analysis was performed using Mann-Whitney test. *P < 0.05, **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts