Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties
Ryan P. Bennett, … , Harold C. Smith, Jens H. Kuhn
Ryan P. Bennett, … , Harold C. Smith, Jens H. Kuhn
Published November 22, 2021
Citation Information: JCI Insight. 2022;7(1):e153165. https://doi.org/10.1172/jci.insight.153165.
View: Text | PDF
Research Article COVID-19 Therapeutics

Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties

  • Text
  • PDF
Abstract

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin’s potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.

Authors

Ryan P. Bennett, Elena N. Postnikova, Brett P. Eaton, Yingyun Cai, Shuiqing Yu, Charles O. Smith, Janie Liang, Huanying Zhou, Gregory A. Kocher, Michael J. Murphy, Harold C. Smith, Jens H. Kuhn

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts