Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties
Ryan P. Bennett, Elena N. Postnikova, Brett P. Eaton, Yingyun Cai, Shuiqing Yu, Charles O. Smith, Janie Liang, Huanying Zhou, Gregory A. Kocher, Michael J. Murphy, Harold C. Smith, Jens H. Kuhn
Ryan P. Bennett, Elena N. Postnikova, Brett P. Eaton, Yingyun Cai, Shuiqing Yu, Charles O. Smith, Janie Liang, Huanying Zhou, Gregory A. Kocher, Michael J. Murphy, Harold C. Smith, Jens H. Kuhn
View: Text | PDF
Research Article COVID-19 Therapeutics

Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties

  • Text
  • PDF
Abstract

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin’s potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.

Authors

Ryan P. Bennett, Elena N. Postnikova, Brett P. Eaton, Yingyun Cai, Shuiqing Yu, Charles O. Smith, Janie Liang, Huanying Zhou, Gregory A. Kocher, Michael J. Murphy, Harold C. Smith, Jens H. Kuhn

×

Figure 4

Combining sangivamycin and remdesivir results in an additive effect against SARS-CoV-2 in multiple cell types.

Options: View larger image (or click on image) Download as PowerPoint
Combining sangivamycin and remdesivir results in an additive effect agai...
Constant ratios of sangivamycin to remdesivir (S:R) were used to evaluate combination effect against SARS-CoV-2 infection in Vero E6 cells and plotted relative to (A) sangivamycin concentration and (B) remdesivir concentration. Each dose combination was run in triplicate with error bars representing standard deviations (SDs). (C) Effects of different combinations of sangivamycin-to-remdesivir ratios on viral infection rate, fit to the Loewe interaction model. Isobologram showing ratio pairs that resulted in 50% virus inhibition calculated from the curves in A and B plotted on the y axis (values from A) and x axis (values from B) relative to the additive (dotted) line drawn between the IC50 values for sangivamycin (S:R = 1:0) and remdesivir (S:R = 0:1) alone. The results of experiments similar to those shown in A and B performed on Caco-2 and Calu-3 cells are shown in Supplemental Figure 3. (D and E) Isobolograms as in C calculated based on results in Supplemental Figure 3. The CI heatmap legend indicates color coding for S:R antagonism (red), additive efficacy (black), or synergy (green) based on ref. 23. CI, combination index.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts