Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception
Marianela G. Dalghi, Wily G. Ruiz, Dennis R. Clayton, Nicolas Montalbetti, Stephanie L. Daugherty, Jonathan M. Beckel, Marcelo D. Carattino, Gerard Apodaca
Marianela G. Dalghi, Wily G. Ruiz, Dennis R. Clayton, Nicolas Montalbetti, Stephanie L. Daugherty, Jonathan M. Beckel, Marcelo D. Carattino, Gerard Apodaca
View: Text | PDF
Research Article Cell biology

Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception

  • Text
  • PDF
Abstract

The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm–dependent manner to link urothelial PIEZO1/2 channel–driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.

Authors

Marianela G. Dalghi, Wily G. Ruiz, Dennis R. Clayton, Nicolas Montalbetti, Stephanie L. Daugherty, Jonathan M. Beckel, Marcelo D. Carattino, Gerard Apodaca

×

Figure 3

Bladder function in Piezo1-control and Piezo1-KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Bladder function in Piezo1-control and Piezo1-KO mice.
(A) Example cysto...
(A) Example cystometrogram. A, amplitude (PP-TP); IVI, intervoid interval (time between voiding events); PP, peak pressure (associated with voiding event); RP, resting pressure; TP, threshold pressure; ΔV/ΔP (compliance), change in pressure in response to an incremental change in volume. (B) Comparison of cystometric parameters for male and female, urethane-anesthetized Piezo1-control and Piezo1-KO mice. Voiding events are marked with red arrowheads (line below arrowhead indicates a single voiding event with multiple pressure spikes). Data, analyzed using Mann-Whitney tests, are shown as mean ± SEM (Piezo1-control, males and females, n = 6; Piezo1-KO female, n = 6; Piezo1-KO male, n = 5). (C) Contraction of muscle strips in response to carbachol and electric field stimulation. Data are shown as mean ± SEM (n = 3).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts