Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation
Matthew R. Riccetti, Mereena George Ushakumary, Marion Waltamath, Jenna Green, John Snowball, Sydney E. Dautel, Mehari Endale, Bonny Lami, Jason Woods, Shawn K. Ahlfeld, Anne-Karina T. Perl
Matthew R. Riccetti, Mereena George Ushakumary, Marion Waltamath, Jenna Green, John Snowball, Sydney E. Dautel, Mehari Endale, Bonny Lami, Jason Woods, Shawn K. Ahlfeld, Anne-Karina T. Perl
View: Text | PDF
Research Article Development Pulmonology

Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation

  • Text
  • PDF
Abstract

Infants born prematurely worldwide have up to a 50% chance of developing bronchopulmonary dysplasia (BPD), a clinical morbidity characterized by dysregulated lung alveolarization and microvascular development. It is known that PDGFR alpha–positive (PDGFRA+) fibroblasts are critical for alveolarization and that PDGFRA+ fibroblasts are reduced in BPD. A better understanding of fibroblast heterogeneity and functional activation status during pathogenesis is required to develop mesenchymal population–targeted therapies for BPD. In this study, we utilized a neonatal hyperoxia mouse model (90% O2 postnatal days 0–7, PN0–PN7) and performed studies on sorted PDGFRA+ cells during injury and room air recovery. After hyperoxia injury, PDGFRA+ matrix and myofibroblasts decreased and PDGFRA+ lipofibroblasts increased by transcriptional signature and population size. PDGFRA+ matrix and myofibroblasts recovered during repair (PN10). After 7 days of in vivo hyperoxia, PDGFRA+ sorted fibroblasts had reduced contractility in vitro, reflecting loss of myofibroblast commitment. Organoids made with PN7 PDGFRA+ fibroblasts from hyperoxia in mice exhibited reduced alveolar type 1 cell differentiation, suggesting reduced alveolar niche-supporting PDGFRA+ matrix fibroblast function. Pathway analysis predicted reduced WNT signaling in hyperoxia fibroblasts. In alveolar organoids from hyperoxia-exposed fibroblasts, WNT activation by CHIR increased the size and number of alveolar organoids and enhanced alveolar type 2 cell differentiation.

Authors

Matthew R. Riccetti, Mereena George Ushakumary, Marion Waltamath, Jenna Green, John Snowball, Sydney E. Dautel, Mehari Endale, Bonny Lami, Jason Woods, Shawn K. Ahlfeld, Anne-Karina T. Perl

×

Figure 5

Gene expression changes in hyperoxia fibroblasts predict WNT signaling as an upstream regulator.

Options: View larger image (or click on image) Download as PowerPoint
Gene expression changes in hyperoxia fibroblasts predict WNT signaling a...
(A) WNT-related gene changes and predictive network were generated by QIAGEN Ingenuity Pathway Analysis using genes significantly altered at PN4, PN7, and/or PN10 (87). (B) RT-qPCR on MACS-isolated PDGFRA+ fibroblasts validated expression of Fzd1, Fzd2, WNT5a, and Lgr6. n = 3–5, control (RA) and experimental (O2) mice were used. A 2-tailed Student’s t test was used, *P < 0.05; **P < 0.01; ****P < 0.0001. Error bars show mean ± SD.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts