Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection
Raja Mohan Gopalakrishnan, Malika Aid, Noe B. Mercado, Caitlin Davis, Shaily Malik, Emma Geiger, Valerie Varner, Rhianna Jones, Steven E. Bosinger, Cesar Piedra-Mora, Amanda J. Martinot, Dan H. Barouch, R. Keith Reeves, C. Sabrina Tan
Raja Mohan Gopalakrishnan, Malika Aid, Noe B. Mercado, Caitlin Davis, Shaily Malik, Emma Geiger, Valerie Varner, Rhianna Jones, Steven E. Bosinger, Cesar Piedra-Mora, Amanda J. Martinot, Dan H. Barouch, R. Keith Reeves, C. Sabrina Tan
View: Text | PDF
Research Article AIDS/HIV Neuroscience

Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection

  • Text
  • PDF
Abstract

Knowledge of immune activation in the brain during acute HIV infection is crucial for the prevention and treatment of HIV-associated neurological disorders. We determined regional brain (basal ganglia, thalamus, and frontal cortex) immune and virological profiles at 7 and 14 days post infection (dpi) with SIVmac239 in rhesus macaques. The basal ganglia and thalamus had detectable viruses earlier (7 dpi) than the frontal cortex (14 dpi) and contained higher quantities of viruses than the latter. Increased immune activation of astrocytes and significant infiltration of macrophages in the thalamus at 14 dpi coincided with elevated plasma viral load, and SIV colocalized only within macrophages. RNA signatures of proinflammatory responses, including IL-6, were detected at 7 dpi in microglia and interestingly, preceded reliable detection of virus in tissues and were maintained in the chronically infected macaques. Countering the proinflammatory response, the antiinflammatory response was not detected until increased TGF-β expression was found in perivascular macrophages at 14 dpi. But this response was not detected in chronic infection. Our data provide evidence that the interplay of acute proinflammatory and antiinflammatory responses in the brain likely contributed to the overt neuroinflammation, where the immune activation preceded reliable viral detection.

Authors

Raja Mohan Gopalakrishnan, Malika Aid, Noe B. Mercado, Caitlin Davis, Shaily Malik, Emma Geiger, Valerie Varner, Rhianna Jones, Steven E. Bosinger, Cesar Piedra-Mora, Amanda J. Martinot, Dan H. Barouch, R. Keith Reeves, C. Sabrina Tan

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 582 107
PDF 132 20
Figure 544 6
Table 57 0
Supplemental data 46 3
Citation downloads 184 0
Totals 1,545 136
Total Views 1,681

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts