The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins — caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin — with expression that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. These results support further investigation into the combined use of caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.
Mehdi Bouhaddou, Rex H. Lee, Hua Li, Neil E. Bhola, Rachel A. O’Keefe, Mohammad Naser, Tian Ran Zhu, Kelechi Nwachuku, Umamaheswar Duvvuri, Adam B. Olshen, Ritu Roy, Aaron Hechmer, Jennifer Bolen, Stephen B. Keysar, Antonio Jimeno, Gordon B. Mills, Scott Vandenberg, Danielle L. Swaney, Daniel E. Johnson, Nevan J. Krogan, Jennifer R. Grandis
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 584 | 142 |
| 209 | 36 | |
| Figure | 293 | 15 |
| Supplemental data | 278 | 26 |
| Citation downloads | 103 | 0 |
| Totals | 1,467 | 219 |
| Total Views | 1,686 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.