Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer
Mehdi Bouhaddou, Rex H. Lee, Hua Li, Neil E. Bhola, Rachel A. O’Keefe, Mohammad Naser, Tian Ran Zhu, Kelechi Nwachuku, Umamaheswar Duvvuri, Adam B. Olshen, Ritu Roy, Aaron Hechmer, Jennifer Bolen, Stephen B. Keysar, Antonio Jimeno, Gordon B. Mills, Scott Vandenberg, Danielle L. Swaney, Daniel E. Johnson, Nevan J. Krogan, Jennifer R. Grandis
Mehdi Bouhaddou, Rex H. Lee, Hua Li, Neil E. Bhola, Rachel A. O’Keefe, Mohammad Naser, Tian Ran Zhu, Kelechi Nwachuku, Umamaheswar Duvvuri, Adam B. Olshen, Ritu Roy, Aaron Hechmer, Jennifer Bolen, Stephen B. Keysar, Antonio Jimeno, Gordon B. Mills, Scott Vandenberg, Danielle L. Swaney, Daniel E. Johnson, Nevan J. Krogan, Jennifer R. Grandis
View: Text | PDF
Research Article Therapeutics

Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer

  • Text
  • PDF
Abstract

The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins — caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin — with expression that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. These results support further investigation into the combined use of caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.

Authors

Mehdi Bouhaddou, Rex H. Lee, Hua Li, Neil E. Bhola, Rachel A. O’Keefe, Mohammad Naser, Tian Ran Zhu, Kelechi Nwachuku, Umamaheswar Duvvuri, Adam B. Olshen, Ritu Roy, Aaron Hechmer, Jennifer Bolen, Stephen B. Keysar, Antonio Jimeno, Gordon B. Mills, Scott Vandenberg, Danielle L. Swaney, Daniel E. Johnson, Nevan J. Krogan, Jennifer R. Grandis

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 584 142
PDF 209 36
Figure 293 15
Supplemental data 278 26
Citation downloads 103 0
Totals 1,467 219
Total Views 1,686

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts