Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets
Thierry Rolling, … , Tobias M. Hohl, Ying Taur
Thierry Rolling, … , Tobias M. Hohl, Ying Taur
Published November 23, 2021
Citation Information: JCI Insight. 2022;7(1):e151663. https://doi.org/10.1172/jci.insight.151663.
View: Text | PDF
Resource and Technical Advance Infectious disease Microbiology

Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets

  • Text
  • PDF
Abstract

Identification and analysis of fungal communities commonly rely on internal transcribed spacer–based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high-resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation compared with the naive Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level assignment of community members.

Authors

Thierry Rolling, Bing Zhai, John Frame, Tobias M. Hohl, Ying Taur

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,182 724
PDF 134 81
Figure 312 8
Table 41 0
Supplemental data 93 24
Citation downloads 80 0
Totals 1,842 837
Total Views 2,679
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts