Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice
Yann Decker, … , Klaus Fassbender, Steven T. Proulx
Yann Decker, … , Klaus Fassbender, Steven T. Proulx
Published December 14, 2021
Citation Information: JCI Insight. 2022;7(3):e150881. https://doi.org/10.1172/jci.insight.150881.
View: Text | PDF
Resource and Technical Advance Neuroscience Vascular biology Article has an altmetric score of 27

Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice

  • Text
  • PDF
Abstract

The anatomical routes for the clearance of cerebrospinal fluid (CSF) remain incompletely understood. However, recent evidence has given strong support for routes leading to lymphatic vessels. A current debate centers upon the routes through which CSF can access lymphatics, with evidence emerging for either direct routes to meningeal lymphatics or along cranial nerves to reach lymphatics outside the skull. Here, a method was established to infuse contrast agent into the ventricles using indwelling cannulae during imaging of mice at 2 and 12 months of age by magnetic resonance imaging. As expected, a substantial decline in overall CSF turnover was found with aging. Quantifications demonstrated that the bulk of the contrast agent flowed from the ventricles to the subarachnoid space in the basal cisterns. Comparatively little contrast agent signal was found at the dorsal aspect of the skull. The imaging dynamics from the 2 cohorts revealed that the contrast agent was cleared from the cranium through the cribriform plate to the nasopharyngeal lymphatics. On decalcified sections, we confirmed that fluorescently labeled ovalbumin drained through the cribriform plate and could be found within lymphatics surrounding the nasopharynx. In conclusion, routes leading to nasopharyngeal lymphatics appear to be a major efflux pathway for cranial CSF.

Authors

Yann Decker, Jonas Krämer, Li Xin, Andreas Müller, Anja Scheller, Klaus Fassbender, Steven T. Proulx

×

Supplemental video 1 - Download (625.20 KB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 2 news outlets
Blogged by 1
Posted by 6 X users
38 readers on Mendeley
See more details