GPCRs are highly desirable drug targets for human disease. Although GPCR dysfunction drives development and progression of many tumors, including breast cancer (BC), targeting individual GPCRs has limited efficacy as a cancer therapy because numerous GPCRs are activated. Here, we sought a new way of blocking GPCR activation in HER2+ BC by targeting a subgroup of GPCRs that couple to Gi/o proteins (Gi/o-GPCRs). In mammary epithelial cells of transgenic mouse models, and BC cell lines, HER2 hyperactivation altered GPCR expression, particularly, Gi/o-GPCR expression. Gi/o-GPCR stimulation transactivated EGFR and HER2 and activated the PI3K/AKT and Src pathways. If we uncoupled Gi/o-GPCRs from their cognate Gi/o proteins by pertussis toxin (PTx), then BC cell proliferation and migration was inhibited in vitro and HER2-driven tumor formation and metastasis were suppressed in vivo. Moreover, targeting Gi/o-GPCR signaling via PTx, PI3K, or Src inhibitors enhanced HER2-targeted therapy. These results indicate that, in BC cells, HER2 hyperactivation drives aberrant Gi/o-GPCR signaling and Gi/o-GPCR signals converge on the PI3K/AKT and Src signaling pathways to promote cancer progression and resistance to HER2-targeted therapy. Our findings point to a way to pharmacologically deactivate GPCR signaling to block tumor growth and enhance therapeutic efficacy.
Cancan Lyu, Yuanchao Ye, Maddison M. Lensing, Kay-Uwe Wagner, Ronald J. Weigel, Songhai Chen
Gi/o-GPCR signaling contributes to HER2-induced mammary tumor development.