Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Kirsten Canté-Barrett, Mariska T. Meijer, Valentina Cordo’, Rico Hagelaar, Wentao Yang, Jiyang Yu, Willem K. Smits, Marloes E. Nulle, Joris P. Jansen, Rob Pieters, Jun J. Yang, Jody J. Haigh, Steven Goossens, Jules P.P. Meijerink
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 916 | 435 |
131 | 89 | |
Figure | 209 | 13 |
Supplemental data | 116 | 42 |
Citation downloads | 35 | 0 |
Totals | 1,407 | 579 |
Total Views | 1,986 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.