Cytokine-producing CD4+ T cells play a crucial role in the control of Mycobacterium tuberculosis infection; however, there is a delayed appearance of effector T cells in the lungs following aerosol infection. The immunomodulatory cytokine IL-10 antagonizes control of M. tuberculosis infection through mechanisms associated with reduced CD4+ T cell responses. Here, we show that IL-10 overexpression only before the onset of the T cell response impaired control of M. tuberculosis growth; during chronic infection, IL-10 overexpression reduced the CD4+ T cell response without affecting the outcome of infection. IL-10 overexpression early during infection did not, we found, significantly impair the kinetics of CD4+ T cell priming and effector differentiation. However, CD4+ T cells primed and differentiated in an IL-10–enriched environment displayed reduced expression of CXCR3 and, because they did not migrate into the lung parenchyma, their ability to control infection was limited. Importantly, these CD4+ T cells maintained their vasculature phenotype and were unable to control infection, even after adoptive transfer into low IL-10 settings. Together our data support a model wherein, during M. tuberculosis infection, IL-10 acts intrinsically on T cells, impairing their parenchymal migratory capacity and ability to engage with infected phagocytic cells, thereby impeding control of infection.


Catarina M. Ferreira, Ana Margarida Barbosa, Palmira Barreira-Silva, Ricardo Silvestre, Cristina Cunha, Agostinho Carvalho, Fernando Rodrigues, Margarida Correia-Neves, António G. Castro, Egídio Torrado


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.