Abstract

Obesity, a major health care issue, is characterized by metabolic abnormalities in multiple tissues, including the skeletal muscle. Although dysregulation of skeletal muscle metabolism can strongly influence the homeostasis of systemic energy, the underlying mechanism remains unclear. We found promoter hypermethylation and decreased gene expression of fibroblast growth factor 6 (FGF6) in the skeletal muscle of individuals with obesity using high-throughput sequencing. Reduced binding of the cyclic AMP responsive element binding protein-1 (CREB1) to the hypermethylated cyclic AMP response element, which is a regulatory element upstream of the transcription initiation site, partially contributed to the downregulation of FGF6 in patients with obesity. Overexpression of Fgf6 in mouse skeletal muscle stimulated protein synthesis, activating the mammalian target of rapamycin pathway, and prevented the increase in weight and the development of insulin resistance in high-fat diet–fed mice. Thus, our findings highlight the role played by Fgf6 in regulating skeletal muscle hypertrophy and whole-body metabolism, indicating its potential in strategies aimed at preventing and treating metabolic diseases.

Authors

Bo Xu, Caizhi Liu, Hong Zhang, Rong Zhang, Mengyang Tang, Yan Huang, Li Jin, Lingyan Xu, Cheng Hu, Weiping Jia

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement