Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury
Filiz T. Korkmaz, … , Katrina E. Traber, Lee J. Quinton
Filiz T. Korkmaz, … , Katrina E. Traber, Lee J. Quinton
Published October 20, 2022
Citation Information: JCI Insight. 2022;7(23):e149955. https://doi.org/10.1172/jci.insight.149955.
View: Text | PDF
Research Article Immunology Inflammation

Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury

  • Text
  • PDF
Abstract

Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1–mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.

Authors

Filiz T. Korkmaz, Anukul T. Shenoy, Elise M. Symer, Lillia A. Baird, Christine V. Odom, Emad I. Arafa, Ernest L. Dimbo, Elim Na, William Molina-Arocho, Matthew Brudner, Theodore J. Standiford, Jawahar L. Mehta, Tatsuya Sawamura, Matthew R. Jones, Joseph P. Mizgerd, Katrina E. Traber, Lee J. Quinton

×

Figure 10

LOX-1+ neutrophils are transcriptionally distinct, with an enrichment of gene programs supporting cholesterol metabolism.

Options: View larger image (or click on image) Download as PowerPoint
LOX-1+ neutrophils are transcriptionally distinct, with an enrichment of...
(A) LOX-1+ and LOX-1– neutrophils (CD45+CD11b+Ly6G+LOX-1+ or LOX-1–) were FACS-sorted 24 hours after intratracheal instillation of E. coli from age-matched male and female C57BL/6 mice (n = 4). (B) Cells were subsequently analyzed by RNA sequencing and were found (C) to be enriched with genes that regulate cholesterol handling by IPA. (D) Genes highlighted in purple and shown in the heatmap indicate genes that regulate cholesterol metabolism and inflammation and were significantly elevated in LOX-1+ neutrophils.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts