Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Nonhematopoietic IRAK1 drives arthritis via neutrophil chemoattractants
Thomas Hoyler, … , Stuart Hawtin, Tobias Junt
Thomas Hoyler, … , Stuart Hawtin, Tobias Junt
Published July 8, 2022
Citation Information: JCI Insight. 2022;7(13):e149825. https://doi.org/10.1172/jci.insight.149825.
View: Text | PDF
Research Article

Nonhematopoietic IRAK1 drives arthritis via neutrophil chemoattractants

  • Text
  • PDF
Abstract

IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type–specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1β or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1β–dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.

Authors

Thomas Hoyler, Bettina Bannert, Cédric André, Damian Beck, Thomas Boulay, David Buffet, Nadja Caesar, Thomas Calzascia, Janet Dawson, Diego Kyburz, Robert Hennze, Christine Huppertz, Amanda Littlewood-Evans, Pius Loetscher, Kirsten D. Mertz, Satoru Niwa, Gautier Robert, James S. Rush, Giulia Ruzzante, Sophie Sarret, Thomas Stein, Ismahane Touil, Grazyna Wieczorek, Geraldine Zipfel, Stuart Hawtin, Tobias Junt

×

Full Text PDF | Download (1.58 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts