Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells
Costanza Lo Cascio, … , Christopher L. Plaisier, Shwetal Mehta
Costanza Lo Cascio, … , Christopher L. Plaisier, Shwetal Mehta
Published September 8, 2021
Citation Information: JCI Insight. 2021;6(17):e149232. https://doi.org/10.1172/jci.insight.149232.
View: Text | PDF
Research Article Oncology Stem cells

Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. In neural stem cells, HDAC2 is the indispensable deacetylase to ensure normal brain development and survival in the absence of HDAC1. Surprisingly, we find that HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by HDAC2. Using cell-based and biochemical assays, transcriptomic analyses, and patient-derived xenograft models, we find that knockdown of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner. We demonstrate marked suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific drugs.

Authors

Costanza Lo Cascio, James B. McNamara, Ernesto L. Melendez, Erika M. Lewis, Matthew E. Dufault, Nader Sanai, Christopher L. Plaisier, Shwetal Mehta

×

Figure 8

Proposed model: consequences of HDAC1 silencing in p53-WT hGSCs.

Options: View larger image (or click on image) Download as PowerPoint
Proposed model: consequences of HDAC1 silencing in p53-WT hGSCs.
Summary...
Summary of the cellular and molecular effects of HDAC1 loss in p53-WT hGSCs. Absence of HDAC1 results in increased histone acetylation and restoration of p53 activation and stability. These changes are accompanied by marked changes in gene expression, wherein genes involved in maintaining stemness are downregulated while genes involved in promoting differentiation and cellular migration and communication are upregulated. In vitro, these cells fail to proliferate and die; however, when transplanted in vivo these cells form slower growing but more invasive tumors. STAT3 activity, which is known to drive aggressive phenotypes in GBM, is upregulated after HDAC1 loss and may be a potential druggable compensatory pathway that may be targeted in combination with more selective HDAC1i.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts