Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

T cell–derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death
Nicholas Chun, Rosalind L. Ang, Mark Chan, Robert L. Fairchild, William M. Baldwin III, Julian K. Horwitz, Jesse D. Gelles, Jerry Edward Chipuk, Michelle A. Kelliher, Vasile I. Pavlov, Yansui Li, Dirk Homann, Peter S. Heeger, Adrian T. Ting
Nicholas Chun, Rosalind L. Ang, Mark Chan, Robert L. Fairchild, William M. Baldwin III, Julian K. Horwitz, Jesse D. Gelles, Jerry Edward Chipuk, Michelle A. Kelliher, Vasile I. Pavlov, Yansui Li, Dirk Homann, Peter S. Heeger, Adrian T. Ting
View: Text | PDF
Research Article Cell biology Immunology

T cell–derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death

  • Text
  • PDF
Abstract

TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1’s death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell–dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered. We show that TNF released by T cells is necessary and sufficient to activate RIPK1-dependent cell death in target cells and thereby mediate target cell cytolysis independently of T cell frequency. Activation of the RIPK1-dependent cell death program in target cells by T cell–derived TNF accelerates murine cardiac allograft rejection and synergizes with anti-PD1 administration to destroy checkpoint blockade–resistant murine melanoma. Together, the findings uncover a distinct immunological role for TNF released by cytotoxic effector T cells following cognate interactions with their antigenic targets. Manipulating T cell TNF and/or target cell susceptibility to RIPK1-dependent cell death can be exploited to either mitigate or augment T cell–dependent destruction of allografts and malignancies to improve outcomes.

Authors

Nicholas Chun, Rosalind L. Ang, Mark Chan, Robert L. Fairchild, William M. Baldwin III, Julian K. Horwitz, Jesse D. Gelles, Jerry Edward Chipuk, Michelle A. Kelliher, Vasile I. Pavlov, Yansui Li, Dirk Homann, Peter S. Heeger, Adrian T. Ting

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 909 216
PDF 131 26
Figure 282 4
Supplemental data 39 2
Citation downloads 103 0
Totals 1,464 248
Total Views 1,712

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts