Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum–only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Yongjun Sui, Jianping Li, Roushu Zhang, Sunaina Kiran Prabhu, Hanne Andersen, David Venzon, Anthony Cook, Renita Brown, Elyse Teow, Jason Velasco, Jack Greenhouse, Tammy Putman-Taylor, Tracey-Ann Campbell, Laurent Pessaint, Ian N. Moore, Laurel Lagenaur, Jim Talton, Matthew W. Breed, Josh Kramer, Kevin W. Bock, Mahnaz Minai, Bianca M. Nagata, Mark G. Lewis, Lai-Xi Wang, Jay A. Berzofsky
Spike-specific humoral immune responses in PBMC and bronchoalveolar lavage samples of the vaccinated animals.