Mounting evidence points to alterations in mitochondrial metabolism in renal cell carcinoma (RCC). However, the mechanisms that regulate the TCA cycle in RCC remain uncharacterized. Here, we demonstrate that loss of TCA cycle enzyme expression is retained in RCC metastatic tissues. Moreover, proteomic analysis demonstrates that reduced TCA cycle enzyme expression is far more pronounced in RCC relative to other tumor types. Loss of TCA cycle enzyme expression is correlated with reduced expression of the transcription factor PGC-1α, which is also lost in RCC tissues. PGC-1α reexpression in RCC cells restores the expression of TCA cycle enzymes in vitro and in vivo and leads to enhanced glucose carbon incorporation into TCA cycle intermediates. Mechanistically, TGF-β signaling, in concert with histone deacetylase 7 (HDAC7), suppresses TCA cycle enzyme expression. Our studies show that pharmacologic inhibition of TGF-β restores the expression of TCA cycle enzymes and suppresses tumor growth in an orthotopic model of RCC. Taken together, this investigation reveals a potentially novel role for the TGF-β/HDAC7 axis in global suppression of TCA cycle enzymes in RCC and provides insight into the molecular basis of altered mitochondrial metabolism in this malignancy.
Hyeyoung Nam, Anirban Kundu, Suman Karki, Garrett J. Brinkley, Darshan S. Chandrashekar, Richard L. Kirkman, Juan Liu, Maria V. Liberti, Jason W. Locasale, Tanecia Mitchell, Sooryanarayana Varambally, Sunil Sudarshan
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 583 | 288 |
93 | 64 | |
Figure | 216 | 7 |
Supplemental data | 132 | 26 |
Citation downloads | 38 | 0 |
Totals | 1,062 | 385 |
Total Views | 1,447 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.