Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

TNFRSF13B polymorphisms counter microbial adaptation to enteric IgA
Jeffrey L. Platt, Mayara Garcia de Mattos Barbosa, Daniel Huynh, Adam R. Lefferts, Juhi Katta, Cyra Kharas, Peter Freddolino, Christine M. Bassis, Christiane Wobus, Raif Geha, Richard Bram, Gabriel Nunez, Nobuhiko Kamada, Marilia Cascalho
Jeffrey L. Platt, Mayara Garcia de Mattos Barbosa, Daniel Huynh, Adam R. Lefferts, Juhi Katta, Cyra Kharas, Peter Freddolino, Christine M. Bassis, Christiane Wobus, Raif Geha, Richard Bram, Gabriel Nunez, Nobuhiko Kamada, Marilia Cascalho
View: Text | PDF
Research Article Immunology Microbiology

TNFRSF13B polymorphisms counter microbial adaptation to enteric IgA

  • Text
  • PDF
Abstract

TNFRSF13B encodes the transmembrane activator and CAML interactor (TACI) receptor, which drives plasma cell differentiation. Although TNFRSF13B supports host defense, dominant-negative TNFRSF13B alleles are common in humans and other species and only rarely associate with disease. We reasoned that the high frequency of disruptive TNFRSF13B alleles reflects balancing selection, the loss of function conferring advantage in some settings. Testing that concept, we investigated how a common human dominant-negative variant, TNFRSF13B A181E, imparts resistance to enteric pathogens. Mice engineered to express mono- or biallelic A144E variants of tnrsf13B, corresponding to A181E, exhibited a striking resistance to pathogenicity and transmission of Citrobacter rodentium, a murine pathogen that models enterohemorrhagic Escherichia coli, and resistance was principally owed to natural IgA deficiency in the intestine. In WT mice with gut IgA and in mutant mice reconstituted with enteric IgA obtained from WT mice, IgA induces LEE expression of encoded virulence genes, which confer pathogenicity and transmission. Taken together, our results show that C. rodentium and most likely other enteric organisms appropriated binding of otherwise protective antibodies to signal induction of the virulence program. Additionally, the high prevalence of TNFRSF13B dominant-negative variants reflects balancing selection.

Authors

Jeffrey L. Platt, Mayara Garcia de Mattos Barbosa, Daniel Huynh, Adam R. Lefferts, Juhi Katta, Cyra Kharas, Peter Freddolino, Christine M. Bassis, Christiane Wobus, Raif Geha, Richard Bram, Gabriel Nunez, Nobuhiko Kamada, Marilia Cascalho

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 478 97
PDF 131 17
Figure 178 0
Supplemental data 58 6
Citation downloads 83 0
Totals 928 120
Total Views 1,048

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts