Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes
Abhishek Kulkarni, Annie R. Pineros, Melissa A. Walsh, Isabel Casimiro, Sara Ibrahim, Marimar Hernandez-Perez, Kara S. Orr, Lindsey Glenn, Jerry L. Nadler, Margaret A. Morris, Sarah A. Tersey, Raghavendra G. Mirmira, Ryan M. Anderson
Abhishek Kulkarni, Annie R. Pineros, Melissa A. Walsh, Isabel Casimiro, Sara Ibrahim, Marimar Hernandez-Perez, Kara S. Orr, Lindsey Glenn, Jerry L. Nadler, Margaret A. Morris, Sarah A. Tersey, Raghavendra G. Mirmira, Ryan M. Anderson
View: Text | PDF
Research Article Endocrinology

12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes

  • Text
  • PDF
Abstract

Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of β cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved β cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.

Authors

Abhishek Kulkarni, Annie R. Pineros, Melissa A. Walsh, Isabel Casimiro, Sara Ibrahim, Marimar Hernandez-Perez, Kara S. Orr, Lindsey Glenn, Jerry L. Nadler, Margaret A. Morris, Sarah A. Tersey, Raghavendra G. Mirmira, Ryan M. Anderson

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 912 174
PDF 154 18
Figure 513 0
Supplemental data 57 11
Citation downloads 96 0
Totals 1,732 203
Total Views 1,935
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts