Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1
Yang Cao, Lingyi Tang, Kang Du, Kitt Paraiso, Qiushi Sun, Zhengxia Liu, Xiaolong Ye, Yuan Fang, Fang Yuan, Hank Chen, Yumay Chen, Xiaorong Wang, Clinton Yu, Ira L. Blitz, Ping H. Wang, Lan Huang, Haibo Cheng, Xiang Lu, Ken W.Y. Cho, Marcus Seldin, Zhuyuan Fang, Qin Yang
Yang Cao, Lingyi Tang, Kang Du, Kitt Paraiso, Qiushi Sun, Zhengxia Liu, Xiaolong Ye, Yuan Fang, Fang Yuan, Hank Chen, Yumay Chen, Xiaorong Wang, Clinton Yu, Ira L. Blitz, Ping H. Wang, Lan Huang, Haibo Cheng, Xiang Lu, Ken W.Y. Cho, Marcus Seldin, Zhuyuan Fang, Qin Yang
View: Text | PDF
Research Article Endocrinology

Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1

  • Text
  • PDF
Abstract

Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than 1000 nuclear-encoded proteins. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain to be fully elucidated. Here, we show that histone demethylase LSD1 KO from adult mouse liver (LSD1-LKO) reduces the expression of one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 regulates gene expression and protein methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), which controls the final step of NAD+ synthesis and limits NAD+ availability in the nucleus. Lsd1 KO reduces NAD+-dependent SIRT1 and SIRT7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABPβ and PGC-1α, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function in the liver, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.

Authors

Yang Cao, Lingyi Tang, Kang Du, Kitt Paraiso, Qiushi Sun, Zhengxia Liu, Xiaolong Ye, Yuan Fang, Fang Yuan, Hank Chen, Yumay Chen, Xiaorong Wang, Clinton Yu, Ira L. Blitz, Ping H. Wang, Lan Huang, Haibo Cheng, Xiang Lu, Ken W.Y. Cho, Marcus Seldin, Zhuyuan Fang, Qin Yang

×

Figure 2

Epigenetic regulation of mitochondrial gene expression by LSD1.

Options: View larger image (or click on image) Download as PowerPoint
Epigenetic regulation of mitochondrial gene expression by LSD1.
(A) Venn...
(A) Venn diagram of overlapped genes altered in the RNA-seq analysis of LSD-LKO liver and with LSD1 peaks in ChIP-seq analysis. (B) DAVID analysis of 1786 genes with LSD1 binding in the LSD1 ChIP-seq and also with altered expression in the RNA-seq analysis of LSD1-LKO liver. (C and D) DAVID analysis of the downregulated (C) or upregulated (D) genes with LSD1 binding. (E) LSD1 binding is enriched at transcription start sites (TSS). (F) Representative LSD1 peaks near the transcription start sites of mitochondrial genes. (G) Heatmap and distribution plots of coincided peaks of LSD1, H3K4me2, and H3K9me2 in the promoter regions of mitochondrial genes. (H) H3K4me2 abundance defined by reads per kilobase million (RPKM) in the promoter regions of the downregulated mitochondrial genes in the LSD1-LKO and control mouse liver. (I) DAVID analysis of altered genes with H3K4me2 binding. (J) ChIP-qPCR for abundance of H3K4me2 on selected mitochondrial genes in the liver of LSD1-LKO and control mice (n = 6 per group). (K) DAVID analysis of altered genes without H3K4me2 binding. Data are shown as mean ± SEM. *P < 0.05 by Student’s t test; **P < 0.0001 by Wilcoxon rank-sum test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts