Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside
Sarmistha Mukherjee, … , Karthikeyani Chellappa, Joseph A. Baur
Sarmistha Mukherjee, … , Karthikeyani Chellappa, Joseph A. Baur
Published March 9, 2021
Citation Information: JCI Insight. 2021;6(7):e147193. https://doi.org/10.1172/jci.insight.147193.
View: Text | PDF
Research Article Hepatology Metabolism

SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside

  • Text
  • PDF
Abstract

Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.

Authors

Sarmistha Mukherjee, James Mo, Lauren M. Paolella, Caroline E. Perry, Jade Toth, Mindy M. Hugo, Qingwei Chu, Qiang Tong, Karthikeyani Chellappa, Joseph A. Baur

×

Usage data is cumulative from January 2022 through January 2023.

Usage JCI PMC
Text version 1,517 374
PDF 172 88
Figure 133 1
Supplemental data 47 6
Citation downloads 25 0
Totals 1,894 469
Total Views 2,363

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts