Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside
Sarmistha Mukherjee, … , Karthikeyani Chellappa, Joseph A. Baur
Sarmistha Mukherjee, … , Karthikeyani Chellappa, Joseph A. Baur
Published March 9, 2021
Citation Information: JCI Insight. 2021;6(7):e147193. https://doi.org/10.1172/jci.insight.147193.
View: Text | PDF
Research Article Hepatology Metabolism

SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside

  • Text
  • PDF
Abstract

Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.

Authors

Sarmistha Mukherjee, James Mo, Lauren M. Paolella, Caroline E. Perry, Jade Toth, Mindy M. Hugo, Qingwei Chu, Qiang Tong, Karthikeyani Chellappa, Joseph A. Baur

×

Figure 3

Sirt3 is essential for liver regeneration but is dispensable for the beneficial effects of NR.

Options: View larger image (or click on image) Download as PowerPoint
Sirt3 is essential for liver regeneration but is dispensable for the ben...
Liver-specific Sirt3-KO mice (denoted as Sirt3–/–) or floxed controls (Sirt3+/+) were subjected to two-thirds PHx and analyzed 48 hours later (n = 5–10 per group). (A) Photographs of regenerating livers. (B) Liver-to-body weight ratios 48 hours after PHx. (C and D) Quantitation of mitosis as determined by counting mitotic figures in hepatocytes in H&E-stained sections under high power. Representation of the images are shown in (D). High power field, 40× objective, 400× magnification for images in D. (E) Hepatic triglyceride content in livers from H2O- and NR-treated mice prior to and after PHx. (F and G) NAD and NADH content in livers from H2O- and NR-treated mice prior to and after PHx. (H) ATP content in livers from H2O- and NR-treated mice prior to and after PHx. Data are shown as the mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; 1-way ANOVA followed by Tukey’s post hoc test (B, C, and E–H).

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts