Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Ghrelin cell–expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin
Kripa Shankar, … , Eric D. Berglund, Jeffrey M. Zigman
Kripa Shankar, … , Eric D. Berglund, Jeffrey M. Zigman
Published September 2, 2021
Citation Information: JCI Insight. 2021;6(18):e146983. https://doi.org/10.1172/jci.insight.146983.
View: Text | PDF
Research Article Endocrinology Metabolism

Ghrelin cell–expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin

  • Text
  • PDF
Abstract

Mechanisms underlying postprandial and obesity-associated plasma ghrelin reductions are incompletely understood. Here, using ghrelin cell–selective insulin receptor–KO (GhIRKO) mice, we tested the impact of insulin, acting via ghrelin cell–expressed insulin receptors (IRs), to suppress ghrelin secretion. Insulin reduced ghrelin secretion from cultured gastric mucosal cells of control mice but not from those of GhIRKO mice. Acute insulin challenge and insulin infusion during both hyperinsulinemic-hypoglycemic clamps and hyperinsulinemic-euglycemic clamps lowered plasma ghrelin in control mice but not GhIRKO mice. Thus, ghrelin cell–expressed IRs are required for insulin-mediated reductions in plasma ghrelin. Furthermore, interventions that naturally raise insulin (glucose gavage, refeeding following fasting, and chronic high-fat diet) also lowered plasma ghrelin only in control mice — not GhIRKO mice. Thus, meal- and obesity-associated increases in insulin, acting via ghrelin cell–expressed IRs, represent a major, direct negative modulator of ghrelin secretion in vivo, as opposed to ingested or metabolized macronutrients. Refed GhIRKO mice exhibited reduced plasma insulin, highlighting ghrelin’s actions to inhibit insulin release via a feedback loop. Moreover, GhIRKO mice required reduced glucose infusion rates during hyperinsulinemic-hypoglycemic clamps, suggesting that suppressed ghrelin release resulting from direct insulin action on ghrelin cells usually limits ghrelin’s full potential to protect against insulin-induced hypoglycemia.

Authors

Kripa Shankar, Shota Takemi, Deepali Gupta, Salil Varshney, Bharath K. Mani, Sherri Osborne-Lawrence, Nathan P. Metzger, Corine P. Richard, Eric D. Berglund, Jeffrey M. Zigman

×

Usage data is cumulative from September 2021 through August 2022.

Usage JCI PMC
Text version 4,064 196
PDF 665 40
Figure 399 5
Citation downloads 54 0
Totals 5,182 241
Total Views 5,423

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts