Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Computational estimates of annular diameter reveal genetic determinants of mitral valve function and disease
Mengyao Yu, Catherine Tcheandjieu, Adrien Georges, Ke Xiao, Helio Tejeda, Christian Dina, Thierry Le Tourneau, Madalina Fiterau, Renae Judy, Noah L. Tsao, Dulguun Amgalan, Chad J. Munger, Jesse M. Engreitz, Scott M. Damrauer, Nabila Bouatia-Naji, James R. Priest
Mengyao Yu, Catherine Tcheandjieu, Adrien Georges, Ke Xiao, Helio Tejeda, Christian Dina, Thierry Le Tourneau, Madalina Fiterau, Renae Judy, Noah L. Tsao, Dulguun Amgalan, Chad J. Munger, Jesse M. Engreitz, Scott M. Damrauer, Nabila Bouatia-Naji, James R. Priest
View: Text | PDF
Research Article Cardiology Genetics

Computational estimates of annular diameter reveal genetic determinants of mitral valve function and disease

  • Text
  • PDF
Abstract

The fibrous annulus of the mitral valve plays an important role in valvular function and cardiac physiology, while normal variation in the size of cardiovascular anatomy may share a genetic link with common and rare disease. We derived automated estimates of mitral valve annular diameter in the 4-chamber view from 32,220 MRI images from the UK Biobank at ventricular systole and diastole as the basis for GWAS. Mitral annular dimensions corresponded to previously described anatomical norms, and GWAS inclusive of 4 population strata identified 10 loci, including possibly novel loci (GOSR2, ERBB4, MCTP2, MCPH1) and genes related to cardiac contractility (BAG3, TTN, RBFOX1). ATAC-Seq of primary mitral valve tissue localized multiple variants to regions of open chromatin in biologically relevant cell types and rs17608766 to an algorithmically predicted enhancer element in GOSR2. We observed strong genetic correlation with measures of contractility and mitral valve disease and clinical correlations with heart failure, cerebrovascular disease, and ventricular arrhythmias. Polygenic scoring of mitral valve annular diameter in systole was predictive of risk mitral valve prolapse across 4 cohorts. In summary, genetic and clinical studies of mitral valve annular diameter revealed genetic determinants of mitral valve biology, while highlighting clinical associations. Polygenic determinants of mitral valve annular diameter may represent an independent risk factor for mitral prolapse. Overall, computationally estimated phenotypes derived at scale from medical imaging represent an important substrate for genetic discovery and clinical risk prediction.

Authors

Mengyao Yu, Catherine Tcheandjieu, Adrien Georges, Ke Xiao, Helio Tejeda, Christian Dina, Thierry Le Tourneau, Madalina Fiterau, Renae Judy, Noah L. Tsao, Dulguun Amgalan, Chad J. Munger, Jesse M. Engreitz, Scott M. Damrauer, Nabila Bouatia-Naji, James R. Priest

×

Figure 3

Forest plots showing genetic correlation of mitral valve annular diameter with related cardiovascular phenotypes.

Options: View larger image (or click on image) Download as PowerPoint
Forest plots showing genetic correlation of mitral valve annular diamete...
(A) For annular diameter measured at systole there is a strong positive correlation with indexed measures of left ventricular volume, obtained from a largely overlapping data set as well as with atrial fibrillation, and a negative correlation with heart rate, mitral valve prolapse, and ejection fraction. (B) Annular diameter measured at diastole displays many of the same correlations, as well as a positive correlation with atrial fibrillation. lv, left ventricular; edv, end diastolic volume; esv, end systolic volume; sv, stroke volume; i, indexed to body surface area; ef, ejection fraction; NICM, nonischemic cardiomyopathy; MI, myocardial infarction; CAD, coronary artery disease; MVP, mitral valve prolapse.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts