Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

CPVL promotes glioma progression via STAT1 pathway inhibition through interactions with the BTK/p300 axis
Hui Yang, … , Xiuming Liang, Kun Lv
Hui Yang, … , Xiuming Liang, Kun Lv
Published November 16, 2021
Citation Information: JCI Insight. 2021;6(24):e146362. https://doi.org/10.1172/jci.insight.146362.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 1

CPVL promotes glioma progression via STAT1 pathway inhibition through interactions with the BTK/p300 axis

  • Text
  • PDF
Abstract

CPVL (carboxypeptidase, vitellogenic-like) is a serine carboxypeptidase that was first characterized in human macrophages. However, the function of CPVL remains unclear in a variety of tumors. The quantitative PCR (qPCR), Western blotting, and IHC assays were utilized to measure the CPVL expression. CPVL was significantly upregulated in glioma cells and tissues compared with normal cells and tissues, respectively. Moreover, high CPVL expression was correlated with advanced clinical grade and poor prognosis. Silencing of CPVL promoted glioma cell apoptosis, and it inhibited cell proliferation and tumorigenicity in vitro and in vivo. Ingenuity Pathway Analysis (IPA) demonstrated that CPVL silencing activated the IFN-γ/STAT1 signaling pathway, thereby inducing glioma cell apoptosis. Mechanistically, immunopurification, mass spectrometry, IP, and glutathione S-transferase (GST) pull-down experiments elucidated that CPVL physically interacts with Bruton’s tyrosine kinase (BTK) and downregulates the STAT1 phosphorylation through promoting p300-mediated STAT1 acetylation. Our findings reveal the crucial role of CPVL in promoting the progression of glioma through suppressing STAT1 phosphorylation. CPVL might serve as a potential prognostic biomarker and therapeutic target for the treatment of glioma.

Authors

Hui Yang, Xiaocen Liu, Xiaolong Zhu, Xueqin Li, Lan Jiang, Min Zhong, Mengying Zhang, Tianbing Chen, Mingzhe Ma, Xiuming Liang, Kun Lv

×

Total citations by year

Year: 2025 2024 2023 2022 Total
Citations: 2 4 3 5 14
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2025 (2)

Title and authors Publication Year
A Prognostic Riskscore Model Related to Helicobacter pylori Infection in Stomach Adenocarcinoma
Peng J, Yan Q, Pei W, Jiang Y, Zhou L, Li R
International Journal of Genomics 2025
Construction of epilepsy diagnosis model based on cell senescence-related genes and its potential mechanism
Gong X, Lu W, Xiao Q, Wang X, Cui C, Tang H
Frontiers in Neurology 2025

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 1 X users
6 readers on Mendeley
See more details