Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
CD6 is a target for cancer immunotherapy
Jeffrey H. Ruth, … , Feng Lin, David A Fox
Jeffrey H. Ruth, … , Feng Lin, David A Fox
Published January 26, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.145662.
View: Text | PDF
Research In-Press Preview Immunology

CD6 is a target for cancer immunotherapy

  • Text
  • PDF
Abstract

Limitations of checkpoint inhibitor cancer immunotherapy include induction of autoimmune syndromes and resistance of many cancers. Since CD318, a novel CD6 ligand, is associated with aggressiveness and metastatic potential of human cancers, we tested the effect of an anti-CD6 monoclonal antibody, UMCD6, on killing of cancer cells by human lymphocytes. UMCD6 augmented killing of breast, lung or prostate cancer cells through direct effects on both CD8+ T cells and natural killer (NK) cells, increasing cancer cell death and lowering cancer cell survival in vitro more robustly than monoclonal antibody checkpoint inhibitors that interrupt the PD-1/PD-L1 axis. UMCD6 also augmented in vivo killing by human peripheral blood lymphocytes of a human breast cancer line xeno-transplanted into immunodeficient mice. Mechanistically, UMCD6 upregulated the expression of the activating receptor NKG2D and down-regulated expression of the inhibitory receptor NKG2A on both NK cells and CD8+ T cells, with concurrent increases in perforin and granzyme-B production. The combined capabilities of an anti-CD6 monoclonal antibody to control autoimmunity through effects on CD4+ lymphocyte differentiation, while enhancing killing of cancer cells through distinct effects on CD8+ and NK cells, opens a potential new approach to cancer immunotherapy that would suppress rather than instigate autoimmunity.

Authors

Jeffrey H. Ruth, Mikel Gurrea-Rubio, Kalana S. Athukorala, Stephanie M. Rasmussen, Daniel Weber, Peggy M. Randon, Rosemary J. Gedert, Matthew E. Lind, Mohammad Asif Amin, Phillip L. Campbell, Pei-Suen Tsou, Yang Mao-Draayer, Qi Wu, Thomas M. Lanigan, Venkateshwar G. Keshamouni, Nora G. Singer, Feng Lin, David A Fox

×

Full Text PDF | Download (3.08 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts